Let us consider the dependence of the wavelength A on the Rayleigh number, and alsc on the amplitude
and frequency of the exciting oscillations. Calculation shows that, in the above-critical region (Ra > Ra*),
A is practically independent of Ra and « (Fig.3b). Hence the phase velocity of TCW propagation is also in-
dependent of Ra and « and is only a function of «. In fact, increase in « leads to decrease in A; the de-
crease is most significant for small w (w < 3) and for large frequencies the dependence of A on w markedly
decreased (Fig. 3a),

In conclusion, it should be noted that the results on TCW obtained in the present work by numerical cal-
culation are in good qualitative agreement with those of analysis [3, 4] and of physical experiments [5,6].

NOTATION

Gr = fgd®(lyd| + Ay)/v?, Grashof number; Ra = GraPr = fgd®yd/va, Rayleigh number; a =yd/(Iydl+ A),
parameter characterizing the relation between the vertical temperature drop in the layer and the amplitude of
the temperature oscillations at the wall; vy = (T; — T,)/d, vertical temperature gradient in layer; I, length of
layer; d, layer thickness; Ay, maximum amplitude of temperature oscillations at wall; v, kinematic viscosity;
a, thermal conductivity; Pr = v/a, Prandt]l number; 8, coefficient of thermal compressibility; g, acceleration
due to gravity; ® (x,y,t), dimensionless temperature in layer; Ra*, critical Rayleigh number corresponding to
loss of mechanical equilibrium of the layer; v/d, scale of velocity; d2/v, scale of time; «, frequency of ex-
citing oscillations; L, depth of penetration, defined as the distance from the side wall at which the amplitude
is reduced by a factor of 10; Ag () =2(1—!al y"1max® (x; 0.5; t)—min® (x; 0.5; t) ], amplitude of temperature os~
cillations in median line of cavity y = 0.5, t€[t),t;], t, = 27/,
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APPROXIMATE SOLUTION OF EXTENDED GRAETZ
PROBLEM BY ORTHOGONAL COLLOCATION

J. Villadsen and M. L. Michelson* UDC 536.242
The method of orthogonal collocation is applied to the Graetz problem. The method allows

a very accurate solution to be obtained in the initial region, where the Fourier series con-

verges very slowly.

1. Introduction

Linear partial differential equations (LPDE) are the mathematical models most commonly used to des-
cribe engincering systems. Boundary-value problems for these equations may be solved by means of Fourier
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sion of the article.
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TABLE 1. Eigenvalues of Classical Graetz Problem (Pe — =) in
Comparison with Eigenvalues Q+ for N =12

k , 1 2 3 4 5 6
i
Fourier series | 7,318 41,61 113,9 215,2 348,2 513,9
' . Difference between Fourier series and 12-point collocation
12-point
collocation
4.10—12 5.10-1 3.10-8 2.10-4 0,2 10,5
k 7 8 9 ; 10 1 12
i
Fourier series 711,2 940,5 1201 1495 1820 2178
12-point Eigenvalues
collocation -
827,7 1539 3627 12243 81559 14,1.108

series. For example, in [2] the first 20 eigenvalues and the corresponding eigenfunctions for an extended
Graetz problem were obtained by the Runge—Kutta method.

However, it is not at all obvious that the classical Fourier-series method allows the basis function that
is best in terms of the rate of convergence to be chosen. In [3], for example, it was shown that to achieve the
same degree of accuracy in approximating the solution of the heat-conduction equation requires many fewer
terms of a polynomial basis function than for a trigonometric Fourier series.

From experience in computation it is known that the approximation to the solution of LPDE obtained
by means of finite Fourier series is good for large values of the independent variables but poor for small
values.

By the orthogonal-collocation method, the solution of LPDE is obtained as an expansion in a finite num-
ber of basis functions, usually Legendre polynomials. The solution reduces to finding the eigenvalues of a
certain matrix. The first eigenvalue of this matrix is usually extremely close to the eigenvalue of the differ-
ential operator, but larger eigenvalues differ more strongly. However, it is found that the resulting solution
is more accurate than that obtained using Fourier series, especially for small values of the independent vari-
ables [3,5,6].

We shall attempt to find an explanation for this difference in accuracy.

2. Extended Graetz Problem

It is assumed that an infinite tube of radius R has a wall temperature T, on the section from z = 0 to
z—>®, At z —-—, a Newtonian liquid is admitted to the tube with temperature Tp. It flows along the tube
in laminar conditions with linear velocity v, and at z — = it acquires a temperature T;. The differential equa-
tions have the form

aT N orT &k 1 0 ( oT )A_azT] e
dz_gz_=2<02>(1 R? ) oz pc, [ r or ’ or Coa2 |’

where z is the longitudinal coordinate and r is the radial coordinate; T(r, z) is the temperature at the point
(r,z); < vz > is the mean axial flow velocity; k is the thermal conductivity; cp is the specific heat; and p is
the density of the liguid.

We introduce the following dimensionless variables:

x= L, = k2 2 g =T

R > Y7 Tae,(voR T PeR’ T,—T,
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Fig.1. Flow-core temperature 7—Eq. (5) —asa function of
y = z/(RPe) for various Pe.

and transform Eq. (1) to obtain

\ 2,
(1— ) a6 _ ! 0 (l 9 \ 1 0%0 @)
dy X Ox Ox Pe? 0y*
The boundary conditions for Eq. (2) are as follows:
0(l, —oo) =1, ~B_1 o,
ax ;'x;-o

o | &)

O0X  gely<o

=0, 0(1, y>>0) =0.

The last term in Eq. (2) may usually be neglected, since for Pe > 30-50 its effect is very small every-
where except in the region close to y = 0 and that close to the wall, where the convective term vanishes; this
is shown, for example, in [1].

The eigenfunctions Fi(x) of Eq. (2) are solutions of the equation

1 d dF 22
— & e E 0= - F=0 4
£ dx ( dx /) [( ) o2 ] 4)
with boundary conditions
OF Lo, O 0 e y<o,
0X  vao % ey

F(1)=0 for y=0.
The solution of Eq. (2) is written in the form of an infinite series

0= ApFy (%) exp (hay),

ops

where Ay are the coefficients of the Fourier series.

Since the boundary conditions at x =1 are different fory < 0 and y = 0, the eigenvalues and eigenfunc-
tions likewise should be found for each region: y < 0 (A, F_)andy =0 (A, F.). They may be determined by
numerical integration of Eq. @) and a selection of A such as to satisfy the boundary conditions for Eq. (4).
Since Eq. (4) is not a Sturm— Liouville problem, the coefficients Ay, and Ak~ cannot be determined using the
usual simple formulas but only numerically. A solution was obtained by this means in [2]. However, as will
be shown below, for small Pe around y = 0 this approach may give results that are even gualitatively incorrect.

In our analysis, the following quantities will be used:
a) the flow-core temperature T(z),

{ poyuTds=T | vpc,ds,
A A
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(5)

1
7.7, y x{ x?%) 0dx
0
b) the Nusselt number
o 0T | 9 a8
A "2 " ®)
T—T, ] '
c) the total heat transfer from z = 0 to the wall
PR
Jz:j‘——k ‘T 2nRdz
r =R
0
or
J J f o8
J= 2 = : ~—4 3‘ | 4y )
Je aR? (v, )y pep (Ts— To) ¥ 0% ey
As Pe — =, we have the limiting values
6(0)=1; J=1-8. 8)

3. Numerical Solution

We find the numerical solution of Egs. (2) and (3) by the orthogonal-collocation method. We define the
following vectors: {xj} = x is the vector of the collocation-point abscissa; {u;} = {x}} =u is the vector of the
zero of the displacement Legendre polynomial Py (u) of degree N;

{et} =0 (xi' y) - g(y)’

We also construct the diagonal matrices U ={uy;} and V ={1 —uii}.

tion equation may be obtained:
dg

[

{¢) =

PeV g —4Pe2(UB - 4) 6.

— &n Y=o ).

Using this notation, the following colloca~-

(€)

The matrices A and B for d6/dy and d%/du? are constructed similarly. An approximation for ¢ is ob-
tained by the Lagrange interpolation formula, using N collocation points together with the point u =1 and, in
some cases, also the point u = 0. Thus, for N + 2 points, we have the following approximation for 6:

N1

N-1
N\ p () N
0 — 6 (u;) = P.(u 9-,
“ ;o‘ (@—uy) p'* () “ ;6‘ e
where
py=ul@—u) ... @—u)@—1
dp
pv = ;
@) du |u_
NE1 Nl
o | Y dPw) | P ()6, = VAe
du 'u;ui B ):_ZO Alu_u L ( ,) !
4o | % 3
u=u; j=0

i=0

At each of the collocation points y; the first and second derivatives of 6 are calculated as the weighted

sum of N + 2 ordinates: 6(0),..., 0(uj),..., 6(1).
given. In our case, both #(0) and 6(1) are unknown for y <
sary to use an interpolation polynomial of order N + 1: p(u)
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The formula is especially convenient when 6(0) and 8(1) are

0, while (1) =0 for y =0. Therefore, it is neces-
=(U-—-u) ... @ -—uN) u—1).
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Fig.2. Nu — Eq. (6) — as a function of y for various Pe.

Q0!

G002 0* w° g
Fig. 3. Dependence of heat flowJ — Eq. (7) — ony
as Pe — =, Curve C shows the results given by 12~
point collocation and by Eq. (12), while A and B cor-
respond to Fourier series with 12 and 30 terms.

For the variable u = x?, the Laplace operator in Eq. (2) takes the form
1 d ( d . d
X - =4 (u - .
x dx \ dx > ( du? du )

Substitution of the collocation vectors u, 8, ¢ and the matrices U, V, A =1{4; } {BIJ} in Eq. (2) also
leads to the system of 2N ordinary differential equations with constant coefficients 1n Eq 9.

Fory = 0 and 6(1) = 0, the given calculation scheme can be used directly. For y < 0, an additional (2N +

1)-th equation is formulated, corresponding to the boundary condition ae/aul 1,y <0 =0:
Bt ]

' N_'
L Y A0 =0,
du u=1,y-20 "

I

i

The solution of Eq. (9) is sought in the form

E.P‘_ = Q‘P‘, Y= (ely sy en’ s wvrs (‘PN)’
dy = -
y 9 L \ B |Q+ for y>=0, (10)
g= \—4Pe*(UB+ A) Pe’V ,) g for y<<0,
Y = exp(Qy) ¥, = Sexp(Ay) SY,. (1)
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The diagonal matrix A contains 2N eigenvalues Q. Of the eigenvalues Q,, N are positive and N are
negative. Since ¥ should be finite for all y = 0, the series of matrices §! which corresponds to positive
eigenvalues should be orthogonal to the vector ¥,. Of the eigenvalues Q_, N — 1 are negative, N are posi-
tive, and one is equal to zero. The series S~ ! which corresponds to negative eigenvalues should be orthog-
onal to ¥, for the same reason. Thus we have 2N — 1 equations for the components of the vector ¥,. The
2N-th equation follows from the condition 0(y) —1 as y — .

The general solution 8(y) is now obtained by the diagonalization of the two 2N X 2N matrices Q; and Q_
and the subsequent solution of 2N linear algebraic equations by the method of Gauss exclusion. The scalar
guantity in Eq. (5) is obtained by Gauss quadrature over the collocation points of the vector 6(y).

4. Discussion of Results

Table 1 presents a comparison of the eigenvalues Ag of the matrix @, for Pe — < and for N =12 with the
eigenvalues of the differential operator. The first two values are equal, within the accuracy of the calculation.
This means that the solutions 8 (y) or 8(y) are good approximations to the accurate solution for "large" y.

As is evident in Fig.1, the function 8(y) is practically independent of Pe for Pe > 50, except for a small
region in the vicinity of y = 0. In Fig.2, the function Nu(y) [6] is shown for various Pe. A similar figure is
shown in [2], but there the curves reached a finite value as y — 0 for Pe < 10, which contradicts the experi-
mentally observed dependence Nu ~ (yPe)~!/ 2 for Pe < 10 [12]. Our curves agree with this result.

In [13] the following empirical relation was found:
J (Pe—> o0) = 1 — 8 = 4.0698y"/, (12)
which is true with accuracy 5% for y < 10~%.

In Fig.3 curves of J(y) calculated using 12 and 30 terms of the Fourier series are shown (dashed curves)
together with a curve calculated by 12-point collocation and the curve given by Eq. (12) (the last two curves
coincide and are shown by the solid curve in Fig.3). From Fig.3 it is evident that the finite Fourier series
does not correspond to Eq. (12), while the polynomial series is very close to Eq. (12) beyond y = 1075, In the
limit as y — 0, of course, the curves diverge, since the infinite derivative 28/ BXIX 1,5 =0 cannot be repre-

’

sented as a polynomial. It is found that, aty =2+10-%, the accuracy obtained in 12-point collocation would
require more than 100 terms of the Fourier series to be taken into account.

This may be a result of the rapid increase in the eigenvalues of the matrix Q, (see Table 1). Thecondi-
tion for a series of N terms to give satisfactory accuracy is that Ayy > 1. This condition is better satisfied
by the collocation series (A, =4.1* 10%) than by the Fourier series (Ay, = 2178).

Thus, in a number of cases, the proposed method gives results for the solution of a boundary-value
problem that are better from both a physical and a mathematical point of view than those obtained using Fou-
rier series.

LITERATURE CITED

1. L. Graetz, Ann. Physik, 25, 337 (1885).

2. C.W. Tan and C. J. Hsu, Intern. J. Heat Mass Transfer, 15, 2187 (1972).

3. J. Villadsen and J. P. Sorensen, Chem. Eng. Sci., 24, 1337 (1969).

4. J. Villadsen and W. E. Stewart, Chem. Eng. Sci., 22, 1483 (1967).

5. B. Finlayson, Chem. Eng. Sci., 26, 1081 (1971).

6. V. Hlavdéek and M. Kubidek, Chem. Eng. Sci., 26, 1737, 1743 (1971).

7. R. B. Bird, W. E. Stewart, and E. Lightfoot, Transport Phenomena, Wiley, New York (1960).

8. 8. N. Singh, Appl. Sci. Res., AT, 325 (1958).

9. M. L. Michelson and J. Villadsen, Chem. Eng. J., 4, 64 (1972).

10. J. Villadsen, Selected Approximation Methods for Chemical Engineering Problems, Instituttet for Kemi-

teknik, DTH, Lyngby (1970).

11. B. Finlayson, The Method of Weighted Residuals and Variational Principles, Academic Press, New York
(1972).

12. J. Newman, The Graetz Problem, UCRL Report No.18646 (1969).

13, J. Newman, J. Heat Transfer, 91, 177 (1969).

814



